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The attenuation of the transverse vibration of a plate, subjected to a harmonic force, is

studied. This goal can be achieved by using an active dynamic absorber. The active

absorber is made of a pair of piezoelectric sheets, attached to both sides of the plate, and

closed electric circuits. One piece of the piezoelectric material provides a sensor for

The equations of motion of the composite plate, including the plate and the

piezoelectric material, and the circuit equations of the sensor and the absorber are

derived. The displacements of the plate and the currents in the circuits are calculated.

The active absorber can successfully attenuate the vibration. The numerical results

show that the proposed active absorber can offer more reduction than that using a

passive absorber while the absorber is designed to suppress the resonance of a

particular vibration mode. Moreover, the active absorber can also reduce the

displacements corresponding to other uncontrolled modes. The effects of altering

various parameters of the active absorber are studied and discussed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical systems or structures may encounter severe vibration owing to external excitations or disturbances. This
can further result in degrading the designed performance. For reducing vibration of structures, different control methods
can be used [1,2].

Two types of control algorithms, active and passive, are usually employed. Using a dynamic absorber is a traditional,
passive control method for reducing vibration near a particular natural frequency of the main system. A mechanical
absorber consists of a secondary mass, a spring, and usually an additional damper [3]. The passive absorber suffers from an
inherent feature, i.e., the sensitivity of the attenuation effect to the absorber’s parameters. In practice, one may obtain
unsatisfied results if the parameters of the main system or the absorber are not precisely estimated. For overcoming this
characteristic, the design of an active or adaptive absorber is brought out. Since these devices still preserve the properties
of a traditional absorber, they are sometimes referred to as active–passive or semi-active absorbers. Various control
methods have been employed to active absorbers [4]. However, only the topics of the papers close to this research are
discussed here. Yuan [5] presented a tunable absorber by applying a displacement feedback and reassigning poles and
zeros of the entire system. Filipovic and Schroder [6] proposed a single active absorber with displacement, velocity, and
acceleration feedback for suppressing the vibration of a multimass vibrating system. However, not much result was
ll rights reserved.
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demonstrated in the paper. An active absorber with an additional feedback compensator within the PZT actuator was
proposed by Jalili and Knowles IV [7]. In the present study, an auto-tuning method was further introduced to effectively
tune the compensator to improve the reduction effect. Hill and Snyder [8] designed a mechanical absorber with a
continuous structure, a bell-rod set, to reduce the vibration of an electric transformer. Motion of the transformer with
multifrequencies can be suppressed because of the existence of different resonant modes of the absorber. Similarly, Bonello
et al. [9] developed a novel type of absorbers consisting of two curve beams with nonlinear stiffness. The characteristics of
an active resonator were investigated by Sun et al. [10]. This resonator consists of two parts including an adaptive–passive
vibration absorber along with an actuator providing a velocity-feedback control force to cancel the damping force. Steady-
state responses were investigated to reveal the control effectiveness. However, no stability analysis was conducted.
Recently, Utsumi [11] presented the numerical control results to the model of a building by using two absorbers. The
introduction of feedback velocity signals has been proven effective for reduction in multiple frequencies. However,
instability may occur when the control gain becomes large. His paper then introduced a new type controlled force for
avoiding instability. Wu and Shao [12] developed a method to adaptively control the absorber with its stiffness dependent
on the phase between the displacements of the main mass and the absorber. Besides the control methods mentioned
previously, vibration reduction of a structure can also be achieved using absorbers with delayed feedback. This type of
algorithm is demonstrated in Refs. [13,14].

For attenuating displacements with multiple frequencies, one active absorber usually cannot achieve the task. For
overcoming the problem, one method proposed before was employing an absorber with an impact mechanism [15,16]
which can eliminate energy of a wide range of frequencies.

Owing to the development of new materials, traditional mechanical absorbers can be replaced by absorbers made of
smart materials, such as, shape memory alloys, magnetostrictive materials [17], and piezoelectric materials. Using the
piezoelectric material along with a properly designed electric circuit can also form a passive absorber [18–20] for vibration
and noise control. The piezoelectric absorber still possesses the drawback of a mechanical absorber. Therefore, the usage of
an active piezoelectric absorber is necessary [21–23]. The control algorithm can be easily implemented by designing a
specific circuit connecting to the piezoelectric material. Through the feedback of the different sensing signals [21–24], the
motion of the structure is sent to the absorber for a more precisely control. In references [21,24], the self-sensing concept,
through the bridge network, was brought out. Here, one piece of piezoelectric sheet can serve as the actuator and the
sensor at the same time for different vibration control methods. Carabelli and Tonoli [25] showed that the measurement
can be improved if the resistance in the bridge was replaced by an active element. The coupling effect of the bridge to the
primary system can also serve as a vibration control mechanism.

In this research, an active piezoelectric absorber, with feedback from a piezoelectric sensor, is investigated for reducing
vibration of the plate due to a harmonic point force. Our intention is to develop a simple but effective way for vibration
attenuation of a continuous structure by applying an active absorber. The main contribution of this paper is the
demonstration of multimode displacement attenuation achieved by employing an active piezoelectric absorber with
velocity feedback. Some related references are discussed in the following. The paper by Tasi and Wang [26] mentioned an
idea of using a passive/active absorber to reduce the random vibration of a beam. This paper brought out the idea of
simultaneous use of a passive piezoelectric absorber and an actively controlled piezoelectric actuator on vibration
reduction of a beam. The passive absorber also serves as the sensor for sending back the motion to the actuator. In this
paper, the dynamics of a composite beam is detail investigated and a systematic design method was presented. In our
paper, a bridge structure of circuit is adopted to feedback the velocity signal of the plate to the active absorber for reducing
vibration. Numerical results are discussed and parametric studies are preformed. Related references about the sensor from
a bridge are given in [11,21,24,25]. Our research is different from [11] because our sensor bridge is made of piezoelectric
material while in [11] that is made of electric elements. The piezoelectric sensing bridge in [21,24] was not used on an
absorber. In [25], most discussions were on the effectiveness of the sensor.

Other related papers, by Morgan and Wang [27,28], focused on the effectiveness of the active–passive piezoelectric absorber
by feedback signal of the charge on the piezoelectric material or displacements of the structure. The method can be employed in
the vibration reduction of a structure subject to a time-varying excitation through application of a DSP controller.
2. Equations of motion of the plate

Consider a metal plate, shown in Fig. 1, with simply supported edges. Two thin piezoelectric sheets are symmetrically
attached to both sides of the plate and serve for the purpose of an active dynamic absorber to reduce the vibration.
Fig. 1. The plate and the attached piezoelectric material.
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The in-plane spatial coordinates on the plate are x and y. Coordinate z is in the transverse direction. The displacements
of the plate and the piezoelectric material are denoted as Ux(x,y,z,t), Uy(x,y,z,t), and Uz(x,y,z,t) with t representing
the time.
2.1. Equations of motion

The equations of motion of the composite system, including the plate and the piezoelectric material, can be obtained by
Hamilton’s principle as follows:

d
Z
ðKmþKp�Wm�WpÞ ¼ 0 (1)

where d represents the variation notation, K is the kinetic energy, and W is the potential energy. The symbol with subscript
m represents a physical quantity of the metal plate and the symbol with subscript p is that of the piezoelectric material.
The kinetic energy of the transverse vibrating plate is written as

Km¼

Z
Vm

1

2
rmUT U dV (2)

and that of the piezoelectric material is

Kp¼

Z
Vp

1

2
rpUT U dV (3)

where U={Ux,Uy,Uz} is the displacement vector, and r and V are the density and the total volume, respectively.
The potential energy of the metal plate can be presented as

Wm ¼

Z
Vm

1

2
ST cmS-FzUz

� �
dV (4)

The first part in the integrand is the strain energy and the second part represents the work potential due to an
external, volume distributed force Fz in the z direction. Here, the strain vector S=[Sxx,Syy,Szz,Sxz,Syz,Sxy]T is related to the
derivatives of displacements. Matrix cm is the matrix of elastic constants and written as

cm ¼

c11 c12 c13 0 0 0

c12 c22 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

2
6666666664

3
7777777775

(5)

These constants are related to Young’s modulus Y, Shear modulus G, and Poisson ratio m by C11=C22=C33=
Y/(1�m2),C12=C13=Ym/(1�m2), C44=G, and C66=Y/2(1+m). The electric enthalpy of the piezoelectric material is expressed
as [11]

Wp ¼

Z
Vp

1

2
ST cpS�ST eE�

1

2
ETeT E

� �
dV (6)

with the matrix of elastic constants cp similar to cm, e the matrix of piezoelectric constants and e the matrix of dielectric
constants written as

e¼

0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 0

2
64

3
75 and e¼

e11 0 0

0 e11 0

0 0 e33

2
64

3
75 (7)

respectively, for the piezoelectric material polarized in the z direction. Here, E=[0,0,Ez]
T is the vector of electric fields where

only Ez is considered if the piezoelectric material is polarized in the z direction.
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From Hamilton’s principle, three coupled equations of motion can be obtained and expressed as [29]

rm
€UxþrpH*ðx,yÞ €Ux�

q½sxxþðsxx�e31EzÞH*ðx,yÞ�

qx

�
q½sxyþsxyH*ðx,yÞ�

qy
�
q½sxzþsxzH*ðx,yÞ�

qz
¼ 0

rm
€UyþrpH*ðx,yÞ €Uy�

q½syyþðsyy�e31EzÞH*ðx,yÞ�

qy

�
q½sxyþsxyH*ðx,yÞ�

qx
�
q½syzþsyzH*ðx,yÞ�

qz
¼ 0

rm
€UzþrpH*ðx,yÞ €Uz�

q½szzþðszz�e31EzÞH*ðx,yÞ�

qz

�
q½sxzþsxzH*ðx,yÞ�

qx
�
q½syzþsyzH*ðx,yÞ�

qy
¼ Fz

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

(8)

within the stresses are written as sxx, syy, szz, sxz, syz, and sxy. Note that no damping is introduced into the plate. In this
research, two pieces of rectangular piezoelectric material are attached from x1 to x2 in the x direction and from y1 to y2 in
the y direction. Notation Hn(x,y) is a 2-D step function representing the covering area of the piezoelectric material. Then,
Hn(x,y) can be expressed as

H�ðx,yÞ ¼HðxÞHðyÞ ¼HxðxÞHyðyÞ ¼ ðHðx1Þ�Hðx2ÞÞðHðy1Þ�Hðy2ÞÞ (9)

where H is the 1-D step function.

2.2. Love simplifications

According to Love simplifications, for a thin plate, the displacements can be approximately expressed as

Uxðx,y,z,tÞ ¼ uxðx,y,tÞþzbxðx,y,tÞ

Uyðx,y,z,tÞ ¼ uyðx,y,tÞþzbyðx,y,tÞ

Uzðx,y,z,tÞ ¼ uzðx,y,tÞ

8><
>: (10)

where ux, uy, and uz are mid-surface displacements. The rotating angles bx and by can be derived by neglecting the shear
strains Sxz and Syz [30]. These requirements yield bx=�quz/qx and by=�quz/qy. As a result, the independent variables are
reduced to x, y and t. One can further neglect rotary inertia, i.e., the double time derivatives of bx and by are zero. Three
equations then can be combined into one in terms of displacement uz(x,y,t). The simplified equation of motion of the
composite plate is written in the form of

rmhm €uzþ2rphp €uzH�ðx,yÞþGsðx,y,tÞ

¼ Fz�e31raðfaþfsÞduðxÞHðyÞ�e31raðfaþfsÞHðxÞduðyÞ (11)

wherein Gs(x,y) is a complicated function representing all stiffness terms of the composite plate and the last two terms in
the right hand side describe the equivalent distributed forces due to piezoelectric effects. Here, two sheets of the
piezoelectric material are attached to both sides of the plate surface. One sheet is acted as a dynamic absorber which
contributes to electric potential fa while the other is the sensor which results in fs. The expressions of fa and fs will be
discussed in the next section. Notation d

0

is the twice derivative of the step function to the corresponding spatial
coordinate, i.e., d

0

(x)=d2Hx(x)/dx2 and d
0

(y)=d2Hy(x)/dy2.

3. Design of the active piezoelectric absorber

For the purpose of vibration control, two piezoelectric sheets are symmetrically attached to both sides of the plate in the
center position. One piezoelectric sheet along with a properly designed electric circuit can form a dynamic absorber similar
to the traditional mass–spring absorber. Another piezoelectric sheet with certain electric circuit is attached to the other
side of the plate for sensing purpose.

The electric field in the z direction, induced by mechanical and electric effects of the piezoelectric material, can be
expressed as [29]

Ez ¼�h31ðSxxþSyyÞþDz=e33 (12)

in which h31=e31/e33 is a piezoelectric constant and Dz is the electric displacement in the z direction. The piezoelectric

effect then produces an electric potential f¼�
R hm=2þhp

hm=2 Ezdz denoted as fa in the absorber and fs in the sensor. From the

integration, electrical potential f is the combination of f�ðx,yÞ ¼
R hm=2þhp

hm=2 h31ðSxxþSyyÞdz due to deflection of the plate and

fc due to an equivalent capacitor Cp=Spe33/hp [29]. Here, Sp is the area of the piezoelectric material, hm and hp are the
thicknesses of the metal plate and the piezoelectric material, respectively.
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Fig. 2. (a) The active absorber and (b) the sensor.
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The piezoelectric absorber, including the piezoelectric material, an inductance and a resistance, is given in Fig. 2(a).
A voltage source Va=KVo is applied to the closed circuit for actively controlling the absorber with K the control gain and
Vo the voltage output from the sensor. The circuit equation of the active absorber can be expressed as

d2
ðLaiaÞ

dt2
þ

dðRaiaÞ

dt
þ

1

Cp
ia ¼

dVa

dt
þ

df�að ~x, ~yÞ

dt
(13)

where iaðtÞ ¼ dDz=dt is the unknown current of the absorber and f�a is evaluated at the location ð ~x, ~yÞ of the attached finite
electrodes. Let oa represent the chosen natural frequency and za be the damping ratio of the absorber. Adopting a design
rule similar to that of a mechanical dynamic absorber [3], the inductance La and the resistance Ra are defined as

La ¼ hp=ðSpe33o2
a Þ and Ra ¼ 2BaoaLa (14)

The terms in the left-hand side of (13) are equivalent to those of a mechanical dynamic absorber and the first term in
the right-hand side is the feedback from the sensor.

The traditional, passive dynamic absorber, with Va=0, can give a satisfactory result in eliminating vibration if the
natural frequency of the absorber oa is exactly equal to the natural frequency of the primary system [3]. However, if these
two frequencies do not match, the presence of the absorber can hardly affect the vibration. In our preliminary research,
different types of feedback signals were sent to the absorber for overcome this drawback of a passive absorber. The results
reveal that a velocity feedback of the main system can actually depress the frequency sensitivity of the absorber mentioned
before and give a better control effect. A similar conclusion was also drawn and discussed in references [11,25]. On the
contrary, the feedback signal containing displacement information can not significantly affect the attenuation effect of the
absorber. In this paper, the sensor design (Fig. 2(b)) realizes the concept of sending back velocity information of the plate.
The sensor is similar to the Wheatstone bridge in the papers by Dosch et al. [21] and by Anderson and Hagood [24].
The governing equations of the sensor are then given as

dðR1i1Þ

dt
þ

1

Cp
i1 ¼

dVs

dt
þ

df�1ð ~x, ~yÞ

dt
and

dðR2i2Þ

dt
þ

1

C2
i2 ¼

dVs

dt
(15)

where R1 and R2 are the additional resistances, i1(t) and i2(t) are currents, and Vs=KsVo is the sensor input voltage with Ks

called a sensor gain or an amplification factor. Capacitor Cp is from the piezoelectric sheet while capacitor C2 is chosen
proportional to Cp for a standard bridge. In this design, the output voltage Vo=V2�V1=R1(i2� i1) of the sensor can be
expressed in the following form in the frequency domain [24]

VoðsÞ ¼
R1Cps

1þR1Cps
f�ðsÞþ

R1Cps

1þR1Cps
�

R2C2s

1þR2C2s

� �
VsðsÞ (16)

Here f� ¼f�a ¼f�s since both are resulted from the thin plate displacement. For R1=R2 and s51/R1C2, the output voltage
Vo(t) is approximately proportional to df�ð ~x, ~yÞ=dt and also the time derivative of the bending strain [24] which is
proportional to the velocity of the plate. Therefore, feedbacking voltage Vo to the active absorber is equivalent to sending
back a velocity signal.



Y.M. Huang, S.C. Hung / Journal of Sound and Vibration 330 (2011) 361–373366
4. Solving the equation of motion

The displacement of the plate can be approximately expressed as

uzðx,y,tÞ ¼
X

m1 ¼ 1

X
m2 ¼ 1

um1m2
ðtÞjm1m2

ðx,yÞ (17)

with um1m2(t) the generalized coordinate. Here, jm1m2 is chosen as the normalized mode shape of the simply supported
plate, without any piezoelectric material attachment, i.e.,

jm1m2
ðx,yÞ ¼

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abrhm

p sin
m1px

a

� �
sin

m2py

b

� �
(18)

Following the standard procedures of Galerkin’s method [3], the governing equation of the composite vibrating plate
(11) is transformed to a set of ordinary differential equations in terms of um1m2(t). These equations are combined with the
equations of electric circuits, derived in the last section, for simultaneously solving um1m2(t) and currents i1(t), i2(t), and
ia(t). Then, the motion of the plate is obtained by using (17).

5. Numerical results and discussions

In this paper, the material of the plate (0.9 m�0.9 m�0.006 m) is aluminum and the piezoelectric material is PVDF.
Each piezoelectric sheet is of thickness 0.001 m and various areas. Table 1 shows the geometric and the material
parameters of the plate and the piezoelectric material. For obtaining frequency responses of the plate, an external
harmonic point force Fz, with forcing frequency o, is applied at the center point of the plate. Therefore, only the odd-modes
are excited and need to be controlled. The natural frequencies on of these modes, for the aluminum plate as well as the
composite plate, are given in Table 2. Here, the first natural frequency of the aluminum plate is on1=36.49�2p rad/s. The
natural frequencies generally decrease due to the enlargement of the attached piezoelectric material.

Two piezoelectric sheets, each with size 0.4 m�0.4 m at first, are attached to both sides of the plate at the center.
Except specified in the paper, the natural frequency of the absorber oa is set to oc1=0.905on1 rad/s which is the first
natural frequency of the composite plate as shown in Table 2. The damping ratio of the absorber za is usually chosen as
0.001. This active absorber is designed to attenuate the resonance of mode (1,1) of the vibrating plate.

5.1. The sensor

The amplitude of the dimensionless velocity at the center of the plate and the sensor output voltage Vo are given in
Fig. 3(a) and (b), respectively, for validating the sensor. Here, the value of resistor R1 is chosen based on 1/(R1C2)=10+ 6 or
10+ 5. The abscissa is the dimensionless forcing frequency o/on1 defined by the forcing frequency o divided by the first
natural frequency of the plate on1. The solid curves in the figures are data obtained by using 1/(R1C2)=10+6. Dashed curves
are those by 1/(R1C2)=10+5 which corresponding to a large value of R1. The curves of output voltage Vo in Fig. 3(b) are
found having similar trends to the velocity curves shown in Fig. 3(a). This suggests that the sensor is effective. Note that, in
Fig. 3(a), two curves for K=5000, Ba=0.001, and different values of Ks are so close together that they coincide with each
other.
Table 1
Geometric and material parameters.

Plate PVDF

E 7.1�1010 N/m2 E 2.0�109 N/m2

n 0.33 n 0.29

rm 2700 kg/m3 rp 1780 kg/m3

hm 0.006 m hp 0.001 m

e31 4.76�10�2 C/m2

e33 1.10�10�10 C/V m

Table 2
First three natural frequencies of the odd-modes.

m1 m2 Aluminum plate Composite plate Composite plate Composite plate

on/on1 Sp=0.4�0.4 Sp=0.6�0.6 Sp=0.8�0.8

oc/on1 oc/on1 oc/on1

1 1 1.00 0.905 0.867 0.860

1 3 5.00 4.705 4.324 4.319

3 3 9.00 8.845 7.778 7.774
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5.2. Varying the system parameters of the absorber

Fig. 4 gives the frequency responses of the uncontrolled aluminum plate, the uncontrolled composite plate, the plate
with two passive absorbers, and the plate with an active absorber. The ordinate is the dimensionless amplitude of the
center displacement u�c of the plate which is defined as the amplitude of the center displacement divided by the static
deflection F/k11 with F the force amplitude and k11 the (1,1) element of the stiffness matrix. For the composite plate, the
resonant peak is found at oc1=0.905on1 as listed in Table 2. The responses of the plate controlled by two passive absorbers,
with oa=oc1 and various za, are obtained when two pieces of piezoelectric sheets connected in parallel along with the
closed electric circuit. In Fig. 4(a) the curves by using active absorbers are obtained for 1/(R1C2)=10+5, K=2000, Ks=100, and
various damping ratios za while in Fig. 4(b) for 1/(R1C2)=10+ 6, K=5000, and Ks=100. Here, higher value of 1/(R1C2) requires
a smaller R1 and yields smaller output voltage Vo according to its definition given in Section 3.

Generally, the results controlled by active absorbers in Fig. 4(a) show superior reduction than those in Fig. 4(b) and also
the wideband characteristic if an appropriate value of za is chosen. However, as mentioned in [11], velocity feedback may
result in instability if a large control gain K is used. The stability of the responses can be examined by checking the
eigenvalues or natural frequencies of the dynamic system. In our research, the equations of the composite plate after
Galerkin’s method and the current Eqs. (13) and (15) are transformed to a state-space form. Then, the eigenvalues are
solved. Numerical results show that the choice in Fig. 4(a) with a large R1 can easily get into instability. Here, a better
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strategy to use is to choose a small R1 and a large K as in Fig. 4(b). The latter case is expected to consume similar amount of
input energy compared to the former. This is based on the fact that control gain K is much higher but the sensor output
voltage Vo is smaller in the latter case.

For the above reasons, this research focuses on the cases of 1/(R1C2)=10+6 and only Fig. 4(b) is discussed. The passive or
active absorbers with small za can bring an anti-resonance near the frequency o=oa, which is surrounded by two new
resonant peaks. Large reduction in the maximal displacement is found usually in company with the appearance of the anti-
resonance. From this figure, both types of passive and active absorbers can evidently decrease the maximal displacement
compared to that of composite plate. The control responses for zar0.001 in the active absorber have similar amplitudes
and are apparently smaller than those for larger za and those by using passive absorbers. Introduction of a small za can also
smooth out the peaks developed by employing passive or active absorbers. Note that the black dashed line represents data
for the aluminum plate. The response looks small because its peak occurs near o/on1=1 which is out of the range of the
plot.

From Fig. 4(b), passive absorbers with za=0.01 behave better than those with za=0.001. Fig. 5 then shows the frequency
responses by using passive absorbers with za=0.01 and active absorbers with za=0.001. Different values of oa are chosen
for observing the reduction effect for oa not equal to the natural frequency of the primary system oc1. Here, oa=0.95oc1

indicates oa is 5% small than the natural frequency oc1. Compared to the passive absorber, the active absorber shows more
robust to the varying of oa and gives more reduction when oaaoc1. For the active absorber with oa=1.05oc1, it is worth
to mentioning that an additional small resonance, which is out of the range of this figure, occurs around o/on1=0.96.

5.3. Varying the control gain K and the sensor gain Ks

The effect of varying the control gain K of the active absorber is illustrated in Fig. 6 where Ks=100. An anti-resonance,
surrounded by two peaks, again occurs at o=oa. The increase of the gain K causes a deep anti-resonance and the decrease
of the peaks. However K49000 is not recommended since the response may be unstable.

Fig. 7 presents the results for K=5000 and different values of the sensor gain Ks. The frequency responses are similar for
different Ks. Large Ks may also give rise to unstable responses and should be avoided.

5.4. Effects on the uncontrolled modes

The previously presented results show the typical characteristic of a dynamic absorber. That is, the absorber works
when its natural frequency oa is chosen close to the resonant natural frequency of the primary system to be controlled.
Each absorber usually can only attenuate one vibration mode of a continuous system. To evaluate whether the control of
mode (1,1) affects other modes, the responses corresponding to modes (1,3) are given in Fig. 8. In these figures, notation
‘‘abs1’’ in the legend indicates using an active absorber for mode (1,1) with oa=oc1=0.905on1. On the other hand, notation
‘‘abs2’’ implies oa=4.705on1 for an absorber designed to control mode (1,3). Some detail data about the maximum
displacements of the response curves are also given in Table 3. In Fig. 8, the reduction in displacement by choosing the
active absorber designed for mode (1,3) is surly successful. The reduction by using two passive absorbers for mode (1,3) is
also satisfactory. Here, no anti-resonance is found and the suppression is not as much as that by using an absorber
matching the natural frequency of mode (1,3). It has been found, in Fig. 7, that increasing Ks in the absorber for mode (1,1)
cannot influence the results near that resonance. However, one can surprisingly observe that a large value of Ks, in the
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active absorber designed for mode (1,1), can actually give considerable decrement in the frequency response near mode
(1,3). The increase of control gain K can hardly influence the results. For higher mode (3,3), most discussions for mode (1,3)
also valid although the numerical data are not presented.

The responses of mode (1,1), by using the absorber frequency oa=4.705on1 equal the natural frequency of mode (1,3) of
the composite plate, are presented in Fig. 9 to confirm the characteristics discussed previously. The reduction of the
maximal displacement, of mode (1,1), can be achieved but not so dramatic compared to that using the absorber for mode
(1,1). Similarly, the increase of sensor gain Ks can produce more reduction in the peak values of the response curves (shown
in Table 4) as mentioned before.

5.5. Current analysis

The amplitudes of the current ia of the absorber and the current i1 in the sensor are presented in Fig. 10(a) and (b) when
the absorber frequency oa is chosen matching oc1, za=0.001, K=5000, and Ks=100 if not specified. In Fig. 10(a), the
currents ia of different absorbers are found having a similar trend except the case with a large za (za=0.01). For za=0.01, a
larger value of maximum ia is observed but it does not indicate a better vibration reduction. It is interesting to see that all
curves coincide at one point near resonance o=oc1. When a large R1 is chosen (the case 1/(R1C2)=10+ 5), ia, corresponding
to frequencies away from resonant point, increases. Therefore, it can smoothe out the peaks, and enhances the reduction
effect. But, one does need to watch the stability of the responses when R1 increased. As discussed in Fig. 7, varying sensor
gain Ks has little influence on the results and two curves for Ks=100 and 6000 are overlapped in Fig. 10(a).
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Table 3
Maximum displacements of the response curves in Fig. 8.

System parameters Max. displacement

K=5000, Ks=100 1196

K=5000, Ks=1000 636

K=5000, Ks=3000 212

K=5000, Ks=6000 104

K=8000, Ks=100 1124
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Fig. 9. Frequency responses of mode (1,1) by controlling mode (1,3).

Table 4
Maximum displacements of the response curves in Fig. 9.

System parameters Max. displacement

K=5000, Ks=100 7592

K=5000, Ks=6000 3614

K=8000, Ks=100 4803
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On the other, the sensor current i1 behaves quite different from ia. In Fig. 10(b), i1 usually has an anti-resonance at the
resonant frequency reflecting the characteristic similar to that of the output voltage in Fig. 3(b). A large Ks can produce a
relatively large i1. However, this cannot guarantee more reduction in the vibration.

From detail analysis of the data, one can find that the real parts of terms dVa=dt and df�að ~x, ~yÞ=dt, in the absorber
equation, are almost canceled in the case of o=oc1. This along with the design of o2

a ¼ LaCp result in an almost purely
imaginary current ia which can destroy most of the external force and give very small displacement of the plate. However,
the above mentioned characteristic is no longer valid when the damping in the absorber becomes large. When the forcing
frequency is at the left or right peak of the response curve, the current ia of the absorber have an imagery part providing
cancellation of part of the external force and a real part current developing addition force to excite the plate motion. At
either peak, raising control gain K can increase the imaginary part of ia and decrease the real part. This can result in more
reduction in the displacement of the plate. On the other hand, ia is relatively insensitive to change in gain Ks owing to the
large coefficient of i1 in the sensor equation. For such a reason, the peaks result almost identical values for different values
of Ks.
5.6. Varying the area of the piezoelectric material

Varying the area of piezoelectric sheets gives shifts of the natural frequencies as listed in Table 2. Fig. 11 illustrates the
results by using an active absorber with different sizes of the piezoelectric sheets when the frequency oa is set to the
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corresponding (1,1) natural frequency of the composite plate. This figure shows that larger size of the piezoelectric sheets
can result in a sharper anti-resonance. Moreover, increasing the size can also reduce the peak values although the
difference is really not so much. Compared to Fig. 5, larger size of piezoelectric material can result in relatively smaller
increase in the peak values of the response curves if oa is not equal to oc1.

5.7. Hysteresis of the piezoelectric material

Hysteresis is an exhibit phenomenon of the piezoelectric material. In other words, the equivalent capacitor Cp of the
piezoelectric material may have a complex value instead of real value of Cp as defined previously. The notation Ri

(presented in percentage) is defined as the ratio of imagery part of Cp to its real part while the absolute value of Cp still kept
the same. In our design of the absorber and the sensor, the chosen values of La, Ra, and C2 are based on the estimated
capacitor Cp ¼ Spe33=hp despite that the equivalent capacitor of piezoelectric sheet may be actually complex. Fig. 12
demonstrates the results by an active absorber with different Ri. From the figure, a�5% Ri can lead to about 10 times
increase of the peak amplitude compared to the case of no hysteresis. The anti-resonance is no long observed when
capacitor hysteresis occurs. For Ri40%, the plate displacements are generally smaller than those for Rio0%. From the
figure, increased control gain K cannot compensate hysteresis. Although not given here, varying Ks has also no effect on the
system. Instead, a better strategy for obtaining more reduction is to choose a large size of piezoelectric material.

6. Conclusions

The design of an active, piezoelectric absorber is investigated for reducing the vibration of a plate subjected to a
harmonic force at the center. Two pieces of piezoelectric sheets, with proper electric circuits, are used for the sensor and
the absorber. The piezoelectric sensor sends the velocity information of the plate to the active absorber. The governing
equations of the coupled system, the plate, the attached piezoelectric absorber and sensor, are theoretically formulated and
solved. The numerical results reveal the potential of using active, piezoelectric absorbers on the vibration control. The
presented active absorber can yield effective reduction in plate vibration not only on the controlled mode but also on the
uncontrolled resonances. Further parametric studies are also presented. The increase of the control gain K of the active
absorber can yield a better reduction effect in the displacements of the plate near the controlled resonant frequency. By
using a larger sensor gain Ks, a better suppression in displacements can usually occur near the uncontrolled resonance.
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